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Evolution on a Smooth Landscape: The Role of Bias

Douglas Ridgway,1 Herbert Levine,1 and David A. Kessler2

Received June 26, 1997

The role of mutational bias in evolution on a smooth landscape is investigated.
We consider both a finite-length genome where the bias increases linearly with
the fitness, and an infinite genome with a fixed bias. We present simulations of
finite populations in a waiting time model, showing both the nonequilibrium
dynamics and the equilibrium fitness distributions that are reached. We com-
pute the equilibrium analytically in several cases, using approximate direct solu-
tion of the master equations and truncated hierarchies.

1. INTRODUCTION

Motivated by results on RNA virus evolution in a controlled laboratory
setting,(1) we recently introduced a simple model of evolution on a smooth
fitness landscape.(2,3) Specifically, we studied a continuous time Markov
process involving birth events (proportional to an individual's fitness),
a compensating uniform death rate and mutations which change the fitness
of descendants by + 1. In addition to naturally explaining some of the
striking experimental findings, this model also offers some important
insights on appropriate analytic strategies for dealing with evolutionary
dynamics. The essential observation is the complete breakdown of mean
field theory (aka the Eigen-Schuster(4) reaction kinetics approach) at any
finite value of the population size N. Instead, the dynamics is controlled by
fluctuations near the "leading-edge," as mutants with improved fitness must
rely on chance to become fixed in the population before being killed.
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In this work, we extend our previous analysis to include the effects of
bias in the mutation process. By bias, we mean the fact that it might be
more likely for the aforementioned mutational event to change the fitness
in one direction as opposed to the other. Bias can arise from two different
causes. First, it might be the case that it is easier to damage a gene (for
example) then to improve it. So, if we interpret the fitness change in our
model as being due to an allele change in one gene (contributing in an
additive fashion), any intrinsic bias in gene improvement versus gene
degradation shows up as fitness-independent bias in our model.

There is a second possible source of bias in a fitness-space model. To
see this, let us focus on the concrete example of a "genome" consisting of
L "genes" taking the values 0 or 1, with fitness taken to be just the sum of
those values. Intrinsic bias would mean that the probability of flipping any
specific "bit" from 0 to 1 is different than from 1 to 0. Even if this is not
the case, however, as we vary the fitness, the overall probabilities of going
up and down in fitness are not the same. In the extreme case of having
L — 1 bits equal to 1 and one bit equal to 0, there is a much greater chance
that a random bit flip will lower fitness as opposed to raise it. This fitness-
dependent bias is sometimes referred to as Muller's Ratchet;(51) it is an
entropic effect corresponding to the relative smallness of genome space
volume near regions of fitness maxima. Formally, one can recover the con-
stant bias case in the L -» oo limit. In this limit, finite changes in fitness
make only infinitesimal changes to the overall percentage of "1" genes and
hence do not alter the bias.

We will show that in the presence of any (negative) bias, the mean fit-
ness of the population eventually stops increasing and the Markov process
reaches an equilibrium state. This result is obtained first by direct simula-
tion of the stochastic evolution rules and is then explained via analytic
solutions of the model in a variety of accessible limits. Just as in our pre-
vious work, we investigate to what extent mean field approaches can
correctly capture the behavior at finite N. What we will see is that in the
fitness-dependent case there is a crossover from a fluctuation-dominated
equilibrium state to a (nearly) mean-field one as N is increased at fixed L.
Even when the equilibrium is correctly described by mean field theory,
however, the dynamics of starting from an arbitrary compact initial popula-
tion and evolving towards the equilibrium remains dominated by fluctua-
tions.

The outline of the rest of this paper is as follows. In the next section,
we define our smooth landscape model and demonstrate computationally
that the mean fitness saturates at long times. Subsequently, we solve the
master equations in the limit of small mutation rate U to analytically
investigate the nature of the equilibrium state; these results are compared
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to simulations in this limit. In particular, for the finite L problem, we find
that there are two very different regimes, one for N « L and the other for
L«N. In the case N« L, the selection pressure is insufficient to over-
come the entropy effect which drives the system to the most probable (in
the absence of selection effects) state with L/2 0's and L/2 1's, and the equi-
librium population remains relatively close to this state. In the opposite
limit, L « N, the system succeeds in getting close to the maximally fit state
with all 1's. We show in Section 4 that the resulting equilibrium state is
well described in this limit by the mean-field treatment, which we solve ana-
lytically. In Section 5, we turn to an analysis of the hierarchy of equations
for moments of the probability distribution. Finally, our results are sum-
marized in Section 6, and where we also discuss future research directions.

2. CONTINUOUS-TIME EVOLUTION MODEL

We consider a population of fixed size, each individual of which
reproduces at a characteristic rate in a standard Poisson process. We iden-
tify this rate as the individual's fitness. To keep the population fixed, an
individual selected randomly from the existing population is killed when-
ever a new individual is born, a kind of competition which forms the sole
interaction between members of the population.(6) The newly born
individual has the same fitness as its parent, except for some fraction of
cases where a mutation occurs, which changes the fitness by ± 1.

To complete the model, we need to specify the probabilities of positive
and negative mutations. One case we consider consists of a fixed length
genome with a finite length L, consisting of individual genes which may be
either functional or deficient. Functional genes are assumed to contribute
some fixed amount to the overall fitness, deficient genes nothing, giving a
smooth fitness landscape with discrete fitnesses. We set U equal to the total
probability of mutation, which if we wish may be considered as arising
from a constant mutation probability per generation per site. What is
important is that we take the probabilities of flipping an individual func-
tional gene into a deficient state or vice versa to be the same. Hence, the
probability of moving up during a mutation, px, is proportional to the
number of deficient genes which could flip, 1 — x/L, where x is the fitness
of the mutating individual. Here, the bias is clearly fitness-dependent as it
arises from the location of the individual genome in relation to the overall
fitness maximum where all genes are functional.

The other case we study is that of constant bias. As we noted above,
this can be thought of as the limit of infinite genome length. We take the
mutation rate per gene, u, to zero in this limit, keeping the overall prob-
ability of mutation u = uL to fixed. The probability of a mutation being
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detrimental is no longer A- dependent, as in the finite L case, as our overall
location in the genome is effectively constant in the large L limit. Thus we
pick a constant probability p of a mutation being beneficial; this propor-
tional can arise either from our location x/L or from an intrinsic bias in the
rates of flipping up or down; in either case, the bias is fitness-independent.
Our previous paper was concerned with this infinite genome limit in the
special case of p = 1/2, i.e. with no overall bias either up or down.

We simulate the continuous time population evolution by using a
waiting time algorithm. The rate for every process in the system (here all
the various possible births) is summed, giving a total rate T. The waiting
time until the next event is picked as a stochastic variable from the dis-
tribution P(At) = exp( — At/T}/r. The simulation time is updated, and the
particular process which occurred is chosen randomly according to its
weight in the overall rate. The new baby is a mutant with probability U,
and its fitness is increased by one with probability p, which may or may
not depend on x as discussed above. Mutations to the zero fitness state are
disallowed. The system is updated, and the cycle is repeated.

Statistics of the system are taken at regular intervals. One consequence
of our continuum-time modeling of each birth event is that as the overall
fitness of the population increases, the amount of computer time required
to simulate a fixed amount of simulation time increases in line with the
overall fitness increase of the population. This is very different than what
occurs in any discrete-time model; here the mean birth (and death) rate
speeds up as fitness increases.

In Fig. 1, we show a typical simulation result for the mean fitness of
a population evolving with a variety of (fixed) negative values of the bias;

Fig. 1. Fitness vs. time, various constant p< 1/2. N=100, U = 0.1, p = 0.4,0.35,0.25;
averaged over 100 realizations.
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i.e., p < 1/2. Note that there is equilibrium state which is reached, which we
found to be independent of initial conditions. This situation is very different
from that which obtains in the model of Woodcock and Higgs,(7) with
which our model shares many features. Woodcock and Higgs also study a
model with our simple single-peak landscape, in the presence of an overall
mutational bias. The crucial difference between the models is in the
dynamics. W-H use a discrete time updating scheme. In their scheme, only
relative fitness differences are meaningful; they replace the entire popula-
tion at fixed time intervals and only the relative number of babies of each
individual determine the makeup of the succeeding generation. This leads
to translation invariance in fitness space and hence to a constant rate of fit-
ness change of the population. Unless one is working with a population
with an explicitly synchronous birthing cycle, our model is more similar to
typical real birth-death processes and hence our finding should be more
relevant to the actual behavior one might expect.

For the case of p >0.5, the fitness increases at an extremely rapid rate.
This is shown in Fig. 2. In any real-world scenario, such a rapid increase
in fitness would quickly bring the system to a region of genome space
which lacks the positive bias, and hence this explosive growth should be
seen for only rather limited periods of time.

Next, we turn to equilibrium fitness distribution in the finite-L, con-
tinuous time model. Again, the average fitness approaches an equilibrium
value independent of the initial conditions, as seen in Fig. 3. Here the situa-
tion is much closer to that of the aforementioned work of Woodcock and
Higgs.(7) Later, we will study the dependence of mean fitness on population
size and mutation rate and discuss the correspondence in more detail.

Fig. 2. Fitness vs. t. various constant p » 1/2. N= 100, U = 0.1, average of 100 realizations.
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Fig. 3. Equilibrium in finite-L,px = l - x/L-model. L= 100, N= 100, U = 0.001. Average of 10
realizations. Initial fitnesses are 3 and 100, showing that the equilibrium fitness is independent
of initial conditions.

3. THE SMALL p LIMIT

We now turn to an analytic treatment of our model in the small u
limit. We work this out first for the case of two individuals. As discussed
in ref. 3, in the small u limit, either both individuals will have the same fit-
ness, or they will have adjacent fitnesses. Call fv the probability that we
have two individuals at x, and gv the probability that we have adjacent
individuals at x and x+l. We may then write an explicit master equation

where we have ignored mutations from g as being lower order in u. We may
solve this explicitly for the equilibrium solution. Setting the time derivatives
to 0, and adding the second equation to the first equation (shifted in x
by 1) we get
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where A+ is the discrete forward-difference operator: A+ {h(x)} s
h(x+ l) — h(x) for any function h(x). This is a continuity equation and is
a byproduct of the conservation of the number of individuals. Thus the
bracketed term is a constant function, and in fact is zero, since / and g
vanish at the origin. Thus, we find

Plugging this into the (shifted) equation of motion for f above yields at
equilibrium

We can now consider our two cases. In the case of constant p, infinite L,
we have that f is a geometric distribution

where r = p/(1 — p) and A is a normalization constant, fixed by the require-
ment that £ v = i / v = l (the contribution of g to the normalization is of
order U and so is negligible). We see that the negative bias swamps the
selection pressure, and the most probable state is that of minimal fitness,
namely that of fitness 1. We compare the predicted density to the result of
simulations in Fig. 4, and note that the agreement is excellent as expected.

Fig. 4. The density distribution at t = 2000; here p = 0.46, U = 0.05. The line is from Eq. 7.
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The (ensemble) average value of the mean fitness, x, is given to leading
order in U by

In Figure 5, we compare this result to those of simulation. Again the
agreement is excellent, showing that for small U, the simulations are well
described by truncation to f and g.

In the case of finite L, with a variable p x = 1 — x/L, we have
fx+1 = ((L - x)/(x + 1)) f, with the solution

with again A being a (different) normalization factor. In other words, f is
in this case a binomial distribution, so that the maximum is at L/2. Here
again the selection pressure is unable to overcome the bias, here induced
by the entropy effect, and the state with maximal entropy is the most prob-
able. The predicted distribution is compared with simulation in Fig. 6,
again with good agreement. The ensemble average mean fitness is clearly
L/2 in this case.

Fig. 5. Equilibrium fitness vs.p, fixed bias. U = 0.05, N-2. The line is the theoretical predic-
tion from Eq. 8.
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Fig. 6. The function fx for L= 100, N = 2, U = 0.1. Average over 4000 realizations at time
t = 50. The line is the theoretical prediction, Eq. 9.

In the constant bias case, then, fx is given by

The second factor has the effect of pushing the distribution out to larger
x's, an effect which increases with N. Thus, the average mean fitness
increases monotonically with N. We can compute this average mean fitness
for large N using Laplace's method for sums.(8) We find that

Thus, asymptotically, the mean fitness increases linearly with N. We show
simulation results, together with a numerical calculation of <x> for

822/90/1-2-14

These small U results are easily extended to arbitrary N. As in ref. 3,
the relevant states are those where the individuals are distributed among
at most 2 adjacent fitnesses. As above, the probability of being in any of
these states can be exactly related to the probability fx of having all the
individuals having the same fitness .v. Doing this, we find that fx satisfies
the equation
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Fig. 7. Equilibrium fitness as a function of population size, with U = 0.1, L = i, p = 0.25;
curve comes from the small U theory, Eq. ( 11 ) .

p = 0.25 in Fig. 7. We see that the asymptotic result of a linear N
dependence sets in quite rapidly, but the agreement of the theory with
simulation data begins to slip at around N= 10. This is because of the fact,
already discussed in ref. 3, that the small U limit is not uniform in N and
the corrections are of order UN. The effect of finite U is to decrease the equi-
librium fitness.

For the finite L case with px = 1 — x/L, the solution is similarly seen to
be

Again, the increased selection pressure for larger N pushes the distribution
out to higher fitnesses. When analyzing this result for large N, we
immediately see that there are two different asymptotic regimes. For
1 «N« L, the maximum is pushed up by an amount of order N from
L/2. For sufficiently large N of order L, the maximum hits the highest
possible fitness x = L (for infinitesimally small U). The distribution is then
completely one-sided, falling as the fitness decreases away from the maxi-
mum. This effect is demonstrated in Fig. 8, where we show the population
density for various N.
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Fig. 8. N — L crossover. For N «. L, we have the behavior already seen in Fig. 6 for the case
N =2, while for N»L we have mean-field type behavior. This figure shows the asymptotic
population density (normalized to one) for N= 10, 100, 1000, U = 0.01.

A comparison of this prediction with simulations is shown in Fig. 9. Again,
finite mutation rate lowers the mean fitness by an amount of order UN.

Fig. 9. Equilibrium value of <x> vs. N. Here L,= 100, U = 0.05. The straight line is
50 + ( N - 2 ) / 2 .



For L<N, the fall-off away from x = L is extremely rapid for very
small U, and U plays a vital role in smoothing the distribution. To analyze
this situation, we turn in the next section to mean-field theory.

4. N»L: MEAN FIELD THEORY

As N becomes much larger than L, one can turn to mean field theory.
The point is that in the equilibrium state, at sufficiently large N all the
high-fitness states are occupied by many individuals and so a mean-field
treatment is valid. While the low-fitness states are vacant, they are irrele-
vant for the behavior of the system. Now, one of the most important results
in our previous work was the utter failure of mean field theory to properly
describe the dynamics at any finite value of the population size. This was
attributed to the fact that outlying more fit mutants are quite often
eliminated by death before they dominate the population. This fact remains
true at finite L and hence the dynamics can not be dealt with via the mean-
field equations, for times less than that required to occupy all the high-
fitness states with a large number of individuals. This crossover time,
however, which depends on the initial conditions, cannot be predicted from
the mean-field theory.

The mean-field equation consists of a deterministic temporal evolution
equation for the population P at each fitness x;

It is immediately apparent from this that the relevant parameter in this
case is uL. N has dropped out of the problem, as we are in the N-> oo
limit. The solution to this recursion relation is clearly

The mean value y needs to be determined by the nonlinear relation
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For large L, we write x = L — y, with y « L. To leading order in L, we
find, for the time-independent state, the simple recurrence relation
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It is easy to verify that this relation is satisfied (up to exponentially small
corrections in L) by the solution y — U L . In this case

Then, £ Py = A exp(UL) and £ yPy = AUL exp(UL) = Ay £ Py and the
condition on y is satisfied. It is also important to note that this solution is
consistent with the equation for P(y = 0), which, since there is no state at
L+ 1, reads to leading order

This means that no boundary layer is necessary to leading order for P, which
in principle might have been necessary since the leading order equation is
only a first-order difference equation. We see then that the mean-field dis-
tribution P(y) has the form of a Poisson distribution, with a maximum at
the mean value y = pL, or in other words x = (1 - U) L. A similar result was
obtained in Woodcock and Higgs(7) in the limit of small U.

How well does the mean field prediction agree with the model results?
Figs. 10 and 11 show a comparison between large N simulations and the
corresponding mean field theory solution. In Fig. 10, the mean-field predic-
tion is quite satisfactory; however, for the larger UL case shown in Fig. 11,
the agreement is fairly poor, even at these rather large values of N. Essen-
tially, the population density at the highest fitness states is still too low for

Fig. 10. Average of 4 density snapshots in the equilibrium state for N= 10000, compared to
mean field theory; L = 100, U = 0.01.
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Fig. 11. Density snapshots in the equilibrium state, compared to mean field theory;
L = 200, U= 0.05.

Fig. 12. Kinetics of approach to equilibrium: mean field theory contrasted with simulations.
Although large populations reach the same equilibrium value as mean field theory, the rate
at which they do so is much slower. Populations N= 1000, 3000, 10000, U = 0.01, L = 200. The
initial condition is for all members of the population to have fitness 100.

the fluctuations to be ignored. If we were to hold uL fixed, one might
imagine that eventually the number of people at the state L, which is
roughly Ne - U L , will be large enough for mean-field theory to be quan-
titatively valid. So, at small UL, one gets reasonably good agreement at
moderate N; as UL increases, this critical population size grows exponen-
tially.



As already mentioned, the dynamics is not mean-field like even when
the final state can be described by this approach. In Fig. 12, the kinetics of
the approach to equilibrium is shown for some large populations and also
for infinite population. For these populations of order a few thousand
individuals or more, the asymptotic distribution is essentially indistinguish-
able from the mean field theory distribution. Nevertheless, the real system
has a quite different behavior in terms of its approach to equilibrium. This
is natural: once the population has reached the areas of high fitness where
it finds equilibrium, mean field theory and the finite population are con-
trolled by the same strong negative bias. However, in the approach to equi-
librium, the time scale for a finite population is set by how long it takes the
luckiest individual to mutate to the top. While this may be quite rapid for
a large population, it is much slower than in mean field theory, which has
infinitely lucky individuals among its infinite population. Due to this effect,
mean field theory will not be even approximately valid for the dynamics of
any finite size population.

5. MOMENT HIERARCHY APPROACH

To complete our understanding it is useful to consider our program
via the moment hierarchy. We saw in ref. 3 that the moment equations can
provide much useful insight. In this section, we derive the first equations
in this hierarchy and relate them to the results obtained in the previous
sections.

In the language of chemical reactions, the master equations for our
model are
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where the first equation is the basic equation of reproduction and selection.
The other two are, respectively, beneficial and detrimental mutations.
(Here, the correlation between reproduction events and mutation events is
ignored. We have checked the validity of this by doing simulations with
uncorrelated reproduction and mutation, and found equivalent results.)

It is convenient to write the master equations in operator form, along
the lines of refs. 9, 10. Probability distributions are vectors |i//}, (using the
notation of [9], where the standard angle-bracket notation denotes an
alternate Hilbert space) and the operators are constructed in terms of



where the matrix element of the operator Q is the ensemble average of w,
the variance of the fitness. Turning now to the mutation term, we have
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raising and lowering operators ar and a, observables are operators, and the
master equation is written in terms of a time evolution operator L. This
time evolution operator L may be broken into separate parts, one for each
"fundamental reaction" composing it. The first such reaction corresponds
to reproduction and selection. This corresponds to an operator

with the mutation piece being

This formalism is convenient for computing moment equation
hierarchies. The moments are given by matrix elements of powers of a
between the state {0| and \\l>}. (It should be noted that in this formalism,
the action of at on the bra state {0| is given by {0| af = {0| which is of
course very different from the rules in second-quantized quantum
mechanics.) For example, the ensemble-average mean fitness is given by
the appropriate matrix element of the operator X=l/N^xxax. Then,
d/dt(xy = {0| XL \\l/}. First we compute the effects of the selection term,

Combining these two results, we get
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Fig. 13. Variance versus time for N = 5000, U = 0.01, L = 200. The init ial condition is for all
members of the population to have fitness 100.

Comparing this to the analogous result in ref. 3, we see that the bias intro-
duces an additional term in the velocity equation. It is this additional term
that for negative bias leads to an equilibrium state. The point is, since the
bias is mutation-driven and the mutation rate is proportional to the
(increasing) birth rate, the bias becomes increasingly important as the pop-
ulation climbs the landscape. This continues until equilibrium is attained.
Without the bias term, this equation is a statement of Fisher's "fundamen-
tal theorem of natural selection",(11) which states that the rate of change of
fitness is equal to the variance of the population. As such, increases of fit-
ness feed off of the variance of the population as supplied by mutations. To
Fisher, this statement captured Darwin's essential insight into the process
of natural selection, hence the name. However, the "theorem" clearly does
not allow the achievement of equilibrium, as in equilibrium the variance
remains finite, but the velocity vanishes. The presence of the bias term in
Eq. (31) repairs this defect.

We can use the result to obtain a rough estimate of the velocity during
the transient phase during which fitness is increasing to its final equilibrium
value. For N»L, the width w saturates fairly quickly at a value close to
its equilibrium value of uL, as found by mean-field theory; this can be seen
by looking at the variance versus time for a single run with N = 5000
shown in Fig. 13. Then, the instantaneous velocity should be given by
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We now investigate these equations for the two cases of constant bias
or a gradient bias. As opposed to the unbiased case, here the skewness, as
well as the connected component <xw> — < x > < w > , does not vanish at
large times, in general. However, these quantities are negligible if p is close
to 1/2, so that the equilibrium fitness is large. To leading order in (p — 1/2),
we easily find
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where S is the skewness defined as

This result agrees roughly with the results of Fig. 12. Mean-field dynamics,
on the other hand, predicts a width that drastically overshoots its equi-
librium value and thereby gets the velocity wrong by a large factor and
achieves equilibrium on times of order 1 as opposed to order 1 / /u .

To compute the equilibrium state, we need to know the width <co>.
To this end, we compute its time derivative. We first need the contribution
of LU to d / d t < w > :

After some tedious algebra, we arrive at

where we have pulled out the sum £* aX2, and set it equal to N— 1 (as
there is one destruction operator to its right).

This term for the time evolution of the variance needs to be added to
the selection piece which was already calculated in ref. (3). This leads to



At small N (i.e. N«L), this is small. Hence in the <x> equation, x must
remain close to L/2 so that px ^ 1/2; it cannot be less than L/2, because the
resultant positive bias would rapidly drive the system to higher fitness. This
then suggests the qualitative prediction that <x> = L/2 + O(N). This result
then justifies a posteriori the previous assumptions about the neglect of the
bias term in the variance equation, as well as the irrelevance of the skew-
ness and connected piece, since these are all small for px ~ 1/2. This is
consistent with the results derived Section 3 using the small U expansion.
Unfortunately, it appears difficult to go beyond this qualitative discussion,
as the aforementioned assumptions break down as soon as we go beyond
these leading order estimates.

6. CONCLUSION

In this paper, we have extended our previous study of evolution on a
smooth landscape to the case where there is a bias in whether a mutation
increases or decreases an individual's fitness. This bias emerges naturally
whenever we take into account the finite size of the genome with a con-
comitant absolute maximum for fitness. In this case the bias varies with fit-
ness; states close to the fitness peak are guaranteed to have a large negative
bias. We have also studied the constant bias situation.

The results we have found are as follows. For small numbers of
individuals in the population and small mutation rate, analytic methods
allow us to find the final equilibrium distribution of fitness. In these cases,
the equilibrium state cannot be described by mean field theory, aka the
Eigen-Schuster equations. For very large N compared to the genome size
L, mean-field theory does correctly predict the final state but still utterly
fails to describe the non-equilibrium dynamics which determines how long
it takes to get to this state starting from typical initial data.
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This formula agrees with our previous formula, Eq. 12, in the same limit.
Notice that the mutation rate U makes a negligible change to the fitness in
this limit.

We now turn to the finite L case. To get a feeling for the answer, we note
that if we neglect the bias term in the variance equation Eq. (35) and again drop
the skewness and use the factorization of <xw>, we recover the simple result
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